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Abstract

The fehQlibs and djbdnscurve6 provide a DNS library which support IPv6 LLU endpoint
addresses. The inclusion of IPv6 LLU endpoint addresses for DNS services is discussed and
shown to be beneficial for particular use cases. Applications linked with this library allow
user-specific DNS settings. Apart from binding to IPv6 LLU addresses and dual-stack usage,
additionally ’reverse IPv6 anycasting’ is an achieved goal welcomed for IoT devices.

1 IPv6 in DNS

The support of IPv6 addresses within DNS
Resource Records (RR) has been settled with
RFC 3596 [30] taking only the Quad-A format
AAAA into consideration. The inverse nibble
format for IPv6 addresses is also well defined.

However, there is a significant gap applying
IPv6 addresses within the DNS, though RFC
4472 [5] clearly expels IPv6 Link-Local Unicast
(LLU) addresses as AAAA RRs in a zone file:

2.1. Limited-Scope Addresses

The IPv6 addressing architecture
[RFC4291] includes two kinds of local-
use addresses: link-local (fe80::/10) and
site-local (fec0::/10). The site-local ad-
dresses have been deprecated [RFC3879]
but are discussed with unique local
addresses in Appendix A.

Link-local addresses should never be
published in DNS (whether in forward
or reverse tree), because they have only
local (to the connected link) significance
[WIP-DC2005].

There is no question that IPv6 LLU ad-
dresses never can be object of any DNS
lookup; but could they be the acting subject
of DNS resolver and perhaps a DNS server?
Could the DNS query and also the response
facilitate IPv6 LLU endpoint addresses?
This questions will be investigated here and

a solution will be outlined using the DNS
implementation ’djbdnscurve6’ [14] together
with the separate DNS stub resolver library
available with ’fehQlibs’ [10]. Both solutions
are based on D.J. Bernstein’s developments [2]
and are particular tailored for IPv6 support,
including all required functions to deal with
parsing and representation of IPv6 addresses,
which are partially taken from Felix von Leit-
ner’s patches [18].

1.1 IPv6 LLU support and the In-
terface Index

Unlike IPv4 addresses, IPv6 addresses are
’scoped’. [fig. 1] gives an overview of this situ-
ation.
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Figure 1: Overview of the IPv6 address hierarchy

In the IPv4 world we consider ’public’
and ’private’ IP addresses (together with the
loopback 127/8 network and the multicast
regime). Within IPv6, the situation is more
strictly structured using the high order bits of
the IPv6 address [8].
IPv6 LLU addresses – like private IPv4 ad-

dresses – are not route-able and usable only on
the attached local link-segment. Unlike IPv4
private addresses however, each link-segment
has its own name space. In practice, this
means that the same IPv6 LLU address can
be used on different links [31].
In order to facilitate a distinction, the kernel

needs to know to which link-segment an IPv6
LLU address belongs to; thus the interface to
which it is bound. In a typical case, one may
consider a system having an Ethernet and a
WiFi interface with the following addresses:

§ fe80::1%eth0
§ fe80::2%wifi0

where the ’%’ is the usual delimiter to sepa-
rate an IPv6 address from its interface identi-
fier.

The lower 64 bit part of the IPv6 address
is typically build from the interface MAC ad-
dress (or using the ’privacy extension’). Fixed
addresses independent from the hardware are
common for Internet servers. Often, the none
route-able part indicates a certain use, like
2001:1ab::fefe:53 for a DNS service.

In IPv6 the interface index (aka the scope
index) is part of the socket definition. For
route-able addresses it is simply ’0’, while for
LLU addresses it is derived from the interface.
The kernel provides a translation between the
interface name (in Unix often eth0) and its
numeric index, ie. 1.
This matching is done either statically –

upon the boot of the operating system – or dy-
namically, whenever a interface is added and
made available. An interface index may also
be removed, upon disabling the interface. This
behaviour corresponds with the usage of mod-
ern IT equipment – like smartphones – enter-
ing and exiting a ’flight mode’.
However, we not only need to consider phys-

ical interfaces here, but also taking care of
additional virtual interfaces: The Operating
System may create (or dismiss) a virtual or
logical interface on demand: At first it be-
comes assigned an EUI-64 (MAC) address and
as second step the corresponding IPv6 unique
and multicast addresses are derived algorith-
mically (SLAAC) [29] [1].
A well-known ’logical’ interface is the loop-

back interface, often named lo0. For IPv4,
the loopback interface is assigned with the
127/8 net (and not only the IPv4 address
127.0.0.1). Rather, for IPv6 two differently
scoped loopback addresses exist:

§ Global scoped: ::1

2



§ Local scoped: fe80::1%lo0

The kernel sees those as different entities
and allows binding to each of them.

1.2 DNS in the IPv6 working model

In IPv6 networks, the LLU addresses are used
to setup a network automatically employing
the ICMPv6 protocol:

§ Stateless Address Autoconfiguration
(SLAAC) is used to determine the unique-
ness of the autonomous chosen and
configured IPv6 address of the interface on
a link-segment.

§ Neighbor Discovery Protocol (NDP) [22] is
the substitute for IPv4’s ARP (Address Res-
olution Protocol) [23].

§ Neighbor Solicitation (NS) and Neighbor
Advertisement (NA) [22] are used to provide
a cache for the neighbor’s link-addresses.

§ Router Advertisements (RA) and Router
Solicitation (RS) together with Unsolicited
Router Advertisements [22] are able to
transmit IPv6 routing prefixes, the set of
default routers, the MTU size, and in partic-
ular a list of IPv6 addresses of DNS servers
to all nodes on the local link-segment [16].

Given the capabilities to provide DNS infor-
mation in an IPv6 network, DHCPv6 [21] can
be used or – as explained – the RA protocol.
In the last case, the messages are encapsulated
as ICMPv6 packages with the IPv6 LLU ad-
dress of the sender and targeting either the
link-local multicast address, or the LLU ad-
dress of a specific node on the link-segment.
In short, within IPv6 networks packets with

LLU addresses are used to transmit messages
containing network configuration information.
It would be a natural choice to setup a DNS
service – either as server or as resolver – to use
IPv6 LLU addresses as endpoints for both the
query and the reply.

1.3 Use cases for DNS IPv6 LLU
endpoint addresses

Applying djbdnscurve6 and applications
based on fehQlibs with its stub resolver rou-
tines, we

1. can setup a DNS (content or cache) server
listening on any interface with the provided
IPv6 LLU address,

2. can build network applications successfully
querying DNS servers given their LLU ad-
dresses while being attached to the same
local link-segment.

Advantage 1:
On this link-segment DNS query/responses
can be operated (irrespectively of the con-
tent provided by the Resource Records RR)
by the usage of LLU addresses. The transmit-
ted IPv6 data packets are limited to the local
link-segment only and are not visible outside
(except someone forwards these unsolicited to
an outside eavesdropper).
Advantage 2:
Within that link-segment we are under con-
trol of our DNS resources. DNS poisoning of
the stub resolvers is impossible from sources
outside this local net.
Advantage 3:
DNS allows to be setup in a ’split-horizon’
manner. The DNS information (in particular
hints to the authoritative name servers) can
be tailored to the local needs.
Advantage 4:
Location based services (LBS) [28] [27] can be
defined and be made authoritative in the local
net only.
Disadvantage:
A DNS Cache Resolver (like dnscache) solely
bound to the IPv6 LLU address can not share
its cached DNS information with potential
DNS clients outside the link-segment.
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We will discuss later, how this disadvan-
tage can be compensated for and mitigated
by applying a socket binding technique called
’reverse IPv6 anycasting’.

In summary, using the local link-segment
for the communication and DNS message ex-
change between the DNS stub resolver and a
DNS server – in particular a caching Name
server – is beneficial and provides anonymity
for the stub resolvers while refraining them
to use other public DNS caches like Google’s
’8.8.8.8’.

2 DNS server with IPv6 LLU
support

Within djbdnscurve6 five DNS server dae-
mons are provided:

§ tinydns is a UDP-only DNS content server.
§ walldns is a UDP-only proxy DNS server
which might be used to shelter a potential
intranet from the Internet while providing
synthetic responses to DNS queries.

§ dnscache is a UDP/TCP DNS full resolver
able to validate and cache the responses in
memory.

§ rbldns is an IPv6-enabled Relay Blacklist
server.

§ axfrdns can be used as DNS zone transfer
server, typically invoked by tcpserver [13]
or sslserver[12] (in case TLS is an option).

The principal architecture of the DNS
servers follow the idea to use IPv6 addresses
everywhere. Thus, IPv4 addresses are usu-
ally (expect for the ’A’ type RR in tinydns)
considered as IPv6-mapped IPv4 addresses
[4]. This holds in particular for dnscache:
Here, the data structure is enhanced (w.r.t. to
Daniel J. Bernstein’s original work [2]) to use
128 bit addresses potentially together with the
required interface indices.

As a side-effect, the DNS resolver routines
are capable of handling up to 32 name servers;
enough to cover the a-m.root-servers.net
[15] supporting both their IPv4 and IPv6 ad-
dresses.

Common to all servers – including
tcpserver and sslserver – is the capability
to bind to any IPv6 address (and of course
IPv4 addresses too).

2.1 Binding to IPv6 LLU addresses

Though IPv6 is now on the market since 25
years and Google has evaluated that its use
is approaching now 30%1, applying IPv6 LLU
addresses for DNS (unicast) services is not well
defined yet.

Within djbdnscurve6 and the auxiliary
tools ucspi-tcp6 [13] and ucspi-ssl [12] two
different ways to provide the required interface
index are used:

a) Composite IPv6 LLU address including the
interface index followed by the % sign:
fe80::fefe%eth0.
Here, the symbolic name for the inter-
face is used and not the interface in-
dex per se. As already mentioned, the
Operating System chooses the enumerated
value of the interface index on its own be-
half. The routines ’socket_getifidx’ and
’socket_getifname’ are sufficient to do the
translation. In this case, a parser is required
to cope with this particular address format.

b) Auxiliary provisioning of the interface index
(name) together with the IP(v6) address
as an independent (optional) argument de-
faulting to ’0’.

In any case, compactified IPv6 can be used
as defined in [8]. For ULA and standard IPv6
addresses the interface index is just defined ’0’
and not required to bind to a specific interface.

1see: https://www.google.com/intl/en/ipv6/
statistics.html
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Figure 2: Network setup with dnscache using distinct listening and resolving IPs; the notation ’:0’ and
’::’ in the sample in the text below

2.2 DNS usage of IPv6 LLU end-
point addresses

For DNS cache servers/full resolvers with en-
abled IPv6 LLU binding support DNS lis-
tening capabilities for queries can be sepa-
rated from the resolving ones: A DNS cache
server (like dnscache) can now accept DNS
queries from the local link-segment while the
actual resolving is realized using its (route-
able) IPv4/IPv6 address [fig. 2]. dnscache
provides the facility to accept queries from au-
thorized sources only, given their client IP ad-
dress (or client IP net by means of the leading
octets).

For any given DNS cache, its server IP
address needs to deployed to the clients or
even may be public (though a Open Re-
solver is not beneficial and considered to be
a risk/bad practice). However, apart from a
multi-homing setup of a DNS cache, his fea-
ture can be used to support DNS clients on
the IPv6 local link-segment.

Advantage 5:
Supporting IPv6 LLU endpoints addresses
empowers a DNS cache server to disentangle

the queries/replies of the DNS clients from the
cache servers name resolution public address
improving robustness and resilience.
Advantage 6:
IPv6 LLU addresses come ’for free’. They are
SLAAC auto-configured and don’t need to be
additionally deployed; in contrast to ULA ad-
dresses. In particular, they are not subject of
IPv6’ ’privacy extension’.

2.3 Simultaneous binding to IPv4
and IPv6

It might be beneficial, if a daemon has the
capability not only to bind to a single IP ad-
dress of the Operating System, but rather to
all. For instance, the Apache web server uses
’0’ as short-cut argument to bind to all IP ad-
dresses.

While a DNS content server – like tinydns
– allows to use the same DNS zone file for sev-
eral instances binding to different interfaces
or IP addresses; for a caching name server –
like dnscache – keeping the DNS information
in memory, this workaround is not beneficial.
Rather, the same cache server instances should
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be used to service all interfaces and IP ad-
dresses.

We may need to distinguish among the fol-
lowing cases:

1. A legacy binding to all IPv4 addresses.
2. A concurrent binding to both IPv4 and

IPv6 addresses (dual stack),
3. A dynamic binding to all static and dy-

namic IPv6 addresses even for virtual in-
terfaces created after the daemon has been
started.

In order to facilitate the usage of a common
binding to both IPv4 and IPv6 addresses, a
’pseudo’ IP address ’:0’ is introduced. If this
’IP address’ is given, the server is told to bind
to all available IPv4 and IPv6 addresses avail-
able on start.

2.4 Reverse IPv6 Anycasting

By virtue of the socket routines available in
the fehQlibs, point three in the previous sec-
tion can be accomplished with ’reverse IPv6
anycasting support’. IPv6 provides the capa-
bility to support this feature using a socket op-
tion. Unfortunately, this has different notions
for Linux/BSD/OmniOS and needs to be ac-
customed for using a pre-compiler flag [lis. 1].

Here, we need to notice that IPv6 allows
the use of the ’unspecified’ address [fig. 1]. In
case ’::’ is given as binding address, ’reverse
IPv6 anycasting’ is honoured and DNS queries
and responses to dynamically build interfaces
are possible even if the DNS server is already
running.

Concerning the use cases in section 1.3, a
further advantage can now be added:
Advantage 7:
For Software Defined Network (SDN) [7] with
’programmed’ link-addresses created and dis-
missed on demand, reverse IPv6 anycasting

allows the use of a DNS cache and/or con-
tent server in order to provision the required
DNS information on demand even on tempo-
rary link-segments.
i n t socket_ip6anycast ( i n t s )
{

i n t opt = 1 ;
i n t r ;

#i f d e f GEN_IP_PKTINFO /∗ Linux ∗/
r = s e t s o c k o p t ( s ,

IPPROTO_IP,GEN_IP_PKTINFO,
&opt , s i z e o f ( opt ) ) ;

#e l i f IP_PKTINFO /∗ S o l a r i s ∗/
r = s e t s o c k o p t ( s ,

IPPROTO_IP,IP_PKTINFO,
&opt , s i z e o f ( opt ) ) ;

#e l i f IP_RECVDSTADDR /∗ BSD ∗/
r = s e t s o c k o p t ( s ,

IPPROTO_IP,IP_RECVDSTADDR,
&opt , s i z e o f ( opt ) ) ;

#e l i f IPV6_RECVDSTADDR
i f ( ! i pv4socke t )

s e t s o c k o p t ( s , IPPROTO_IPV6,IPV6_ONLY,
&opt , s i z e o f ( opt ) ) ;

r = s e t s o c k o p t ( s ,
IPPROTO_IPV6,IP_RECVDSTADDR,
&opt , s i z e o f ( opt ) ) ;

#e n d i f
r e turn r ;

}

Listing 1: Reverse IPv6 anycasting primitive for
different Unix OS; ipv4socket is a global variable

3 DNS (stub) resolvers en-
hanced for IPv6 LLU ad-
dresses

In the previous chapter we discussed the
server/daemon situation with regard to *iX
systems. On the client side, the situation is
however different: The server may bind to any
IP(v6) address, whereas the client must use
(one of) the unicast address available on the
interface sending a message, in our case, the
DNS query.

While all Operating Systems are based
on the same IPv4 stack originating from the
legacy Unix/BSD systems (Berkeley sockets),
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concerning IPv6 the situation is the following:

§ In the BSD (and in the MacOS Darwin)
kernel the results of KAME/WIDE project
have been incorporated to provide a solid
IPv6 implementation [17], [32].

§ In Linux, starting with kernel version 2.4
a preemptive-able network stack was intro-
duced, also supporting IPv6 [25].

§ For the Windows operating system, Mi-
crosoft has developed IPv6 support starting
with Windows XP and employing an own
extension of the network interface [19].

In practice, this leads to a recognizable dif-
ference in the socket usage, in particular w.r.t
to the understanding of an interface, while the
main POSIX features defined in [6], [26] are
still present.

3.1 DNS configuration based on
/etc/resolv.conf

The classical way for *iX Operating Systems
is to depend on configuration files like

§ /etc/hosts

§ /etc/resolv.conf

§ /etc/nsswitch.conf

In the advent of the systemd [24] subcom-
ponent for Linux this has changed, but is out-
side the scope of this paper, though systemd
provides DNS capabilities [fig. 3].

Unfortunately, the scope and usage of
/etc/resolv.conf is not discussed in any
RFC, while at least the original DNS RFC
1034 [20] mentions a configuration file. In
fact, according to Wikipedia2 there is a her-
itage of the Berkeley Internet Name Daemon

2https://en.wikipedia.org/wiki/Resolv.conf

BIND implementation. Since there is no for-
mal description how this file shall be struc-
tured, /etc/resolv.conf is practically unus-
able to host IPv6 (LLU) addresses3.

It is important to recall that
/etc/resolv.conf does not necessarily con-
tain static information (unlike /etc/hosts)
but rather is subject to be rewritten be
DHCP(v6) [21] and/or the RA daemon like
radvd.

The situation to use IPv6 (LLU) addresses
within /etc/hosts is not clear and depends
on the Operating System. In FreeBSD there
is a ’bug’ which prevents recognizing LLU ad-
dresses but rather truncates those and inter-
prets them as hostname.

/etc/resolv.conf

Unix
Kernel

eth0 eth1 vlan0 vlan1lo0

DHCP

App2

DHCPv6

RADVD

App1

sy
st

em
d

DN
S 

re
so

lv
er

libresolv.so
 or libc.so

192.168.1/24 fe80::/10

RA client

unsolicited RA

Figure 3: Interaction of the applications with the
*iX DNS stub resolver libraries. DNS configura-
tion data maybe received via DNS or RA

3.2 Alternate DNS configuration of
the stub resolver

The DNS stub resolver consists of a library
used by the Unix kernel or any user space ap-

3https://www.freebsd.org/cgi/man.cgi?query=
resolv.conf&sektion=5
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plication [fig. 3]. Currently, there is a discus-
sion to use ’DNS-over-HTTP(S)’ DoH [9], in
particular for Web browsers.

This actually may lead to the following dis-
tinctions:

1. The application depends on the core *iX
DNS Operating System information as
provided centrally (and potentially up-
dated by DHCP(v6)/RA) as available in
/etc/resolv.conf ãÑ this is the tradi-
tional *iX way [fig. 3].

2. The Operating System may provide the ap-
plication a DNS information which is spe-
cific for the interface the application actu-
ally uses ãÑ this is the current Windows
approach.

3. The application may use an application spe-
cific tailored DNS configuration it relies
upon ãÑ DoH and the solution discussed
in the next section.

3.3 Feeding the stub resolver with
DNS hints

A DNS stub resolver needs to be fed with some
information in order to start and succeed with
the query:

§ The IP addresses of the (recursive) name
server to query, called RDNSS in [16].

§ The local domain added to queries without
a full qualified domain name.

Within djbdnscurve6 and the fehQlibs
D.J. Bernstein’s approach is followed to provi-
sion this information as environment variables

§ $DNSCACHEIP
§ $LOCALDOMAIN
§ $DNSREWRITE

to the DNS stub resolver. $DNSCACHEIP is
a list defining up to 32 (composite) IP ad-
dresses (thus potentially including the inter-
face index) of the full resolvers or DNS servers

to query. For unqualified DNS queries, the
$LOCALDOMAIN information can be given ad-
ditionally; which is equivalent to the domain
directive in /etc/resolv.conf. $DNSREWRITE
points to a file potentially re-writing a given
FQDN4.

It shall be noted, that these DNS hints are
subject of on-demand change and in case the
DNS stub resolver is capable to do so, are re-
evaluated. Thus, dynamical changes of the
DNS configuration are recognized and hon-
oured.

3.4 Possible solutions to use a DNS
stub resolver (library) by an ap-
plication

In section 3.2 we already discussed the differ-
ent ways an application depend on the provi-
sioned DNS information. Lets now introduce
a model for that, showing two different scenar-
ios.
Scenario 1:
In [fig. 3] the system is equipped with applica-
tions making use of the systems libresolv
library which reads the provisioned IP ad-
dresses of DNS full resolvers to contact. How-
ever, configuring a DNS stub on eth1 and
the corresponding LLU address given exter-
nal sources on that link-segment is impossi-
ble, since the interface name and the inter-
face index have local meaning only. The same
would hold on any DNS resolvers available on
a virtual network adaptor, e.g. vlan0. This
problem is apparent for tunneling interfaces,
typically set up by a VPN: DNS traffic is
now centralized re-direct to a DNS resolver
on a now dynamically re-defined content of
/etc/resolv.conf.
Scenario 2:
Alternatively, considering the possibility to
setup the required DNS information locally

4http://cr.yp.to/djbdns/qualify.html
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LLU address on interface eth1 for DNS lookup

by means of dnsresolv [fig. 4] allows to read
those parameters from the user’s environment.
Application starting from here and linked with
dnsresolv will catch up those instructions for
the DNS stub resolver accordingly. If these di-
rectives are missing, a fall-back to the system
setting (/etc/resolv.conf) is foreseen.

On the bottom line, the user has now the
regained capability and perhaps responsibil-
ity to care about its own DNS configuration,
in case the application permits it. This can
be compared with the possibility in the web
browser to switch DoH on or off and not just
depending on a pre-configured setting which
might be infringed with the user’s demands.

3.5 DNS resolver based on dnsre-
solv

In order to benefit from that architecture, a
potential DNS (stub) client can be build with
three options using either:

1. libdnsresolv.so – dynamic, position in-

dependent (PIC) ’shared object’ library.
2. dnsresolv.a – static DNS resolver lib

(linked to libdnsresolv.a).
3. dnscresolv.a – static DNS resolver

lib including CurveDNS capabilities from
djbdnscurve6.

Apart from the CurveDNS support within
dnscresolv.a, these libraries provide the
same DNS primitives and a common API;
though not compatible with the ISC’s BIND5

ones, which D.J. Bernstein even used within
qmail [3]. Since low-level IP address pars-
ing and string/byte handling and in particular
IPv6 parsing is taken from the fehQlibs, they
have to be linked in addition.

Linux FreeBSD
AMD64 ARM64

Module size [Byte] size [Byte]
libdnsresolv.so 43593 208632
dnsresolv.a 71406 64254
dnscresolv.a 81426 75882
libqlibs.so 85713 218296
qlibs.a 150736 132350

Table 1: Size comparison of the dns(c)resolv and
fehQlibs libraries on Linux (gcc 4.7.2, glibc 2.13)
and FreeBSD (clang 6.0.1, ld 6.0.1)

As can be depicted from [tab. 1], the result-
ing libraries are quite small. This makes them
in particular useful for systems with limited
CPU power and main memory, which could be
a IoT device for instance. In fact, the small-
ness of those libraries does not put a heavy
burden on applications being statically linked
with those. Generating none-recursive DNS
client modules for s/qmail [11] like dnsip,
dnsmxip and others, show up to have a com-
mon size of about 52 KByte (under Linux) in-
cluding dnsresolv.a and qlibs.a statically

5a description of the BIND APIs can be found
here: https://bind9.readthedocs.io/en/latest/
libdns.html
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linked. The inclusion of CurveDNS routines
enhance the client routines by about 10 kByte
and further 10 kBytes are required for recur-
sive DNS clients like dnsqr [14].

4 Summary
With djbdnscurve6 and the DNS stub li-
brary provided in fehQlibs a solution is given
taking care of IPv6 LLU endpoint addresses
for DNS queries and responses. However, this
does not allow to proliferate IPv6 LLU ad-
dresses in DNS as exempted by [5].

The DNS stub resolver can be configured
by user-space environment variables. The
solution also provides binding to dynami-
cally created IPv6 addresses on ephemeral in-
terfaces generated by software defined link-
segments.

The DNS stub resolver – available with and
without CurveDNS capabilities – is stable and
mature and in particular suited for devices
with restricted sources. The code is available
(enhancing D.J.Bernstein’s library functions)
without restriction and well documented.

Though many current requirements for
DNS query and response are missing (like
DNSSec and multicast support), they are not
infringing with the proposed solution.
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