
SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

DomainKeys Identified Mails (DKIM)
- The sharpest sword in our fight against Spam (?) -

106th FRAOSUG meeting

Dr. Erwin Hoffmann
www.fehcom.de

19. September 2023

1 / 31

www.fehcom.de

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

DomainKeys Identified Mails – DKIM

TELNET, FTP, SMTP, and HTTP are ASCII-based communication and transport
protocols. They follow a simple command/reply scheme. While TELNET and
FTP are considered obsolete and are in practice substituted by the SSH/SCP
protocol family, HTTP is an end-to-end communication protocol now mostly
used in the context of HTTP/2 requiring TLS encryption.

However, SMTP is a host-to-host protocol, which allows unsolicited sending of
RFC 821/822 emails/messages. Its abuse was evident from the beginning
and a lot of effort has been invested to make the protocol more ’safe’ and
’confidential’ – though it isn’t up to now.

DKIM is the last answer in email authentication and message integrity veri-
fication. It originates back to the year 2006 when Yahoo [1] was still a big
email vendor and fought against spam waves. Under the driving force of Yahoo
(which patented DomainKeys), Alt-N raised the C++ based libdkim [3], which
was the starting point of my own DKIM implementation in s/qmail 4.2.

I will examine the DKIM protocol, its cornerstones, implementations, exten-
sions, and current usage in this talk.

2 / 31

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

SMTP Email: Basically no Regulation

The sketch of RFC 821 SMTP description shows, that there is practically no
restriction involved:

Figure: Sketch of RFC 821 SMTP component model for a Mail Transfer Agent (MTA)

An email address is used for the forwarding and reverse path: MAIL
FROM:<Smith@Alpha.ARPA>, RCPT TO:<Jones@Beta.ARPA>.

The local part of the email address could be pseudonym, the host part has to
identify a domain.

3 / 31

https://tools.ietf.org/html/rfc821

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

SMTP: A market place

We can consider SMTP email as a evolving market: We have users (consumers) and
vendors. The big initial vendors tried to get and improve their market share:

AOLa

Yahoo

Hotmail

Microsoft (and much later)

Google (2004/2005)b

and in Germany

T-Online,

GMX,

Webmail.de.

aAnnalivia Ford fought 8 years in AOL’s
spam tranches as ’the angry lady at AOL’
[http://blog.annaliviaford.com/]

bhttps://en.wikipedia.org/wiki/

History_of_Gmail

Figure: Yahoo’s logo when they were still a leading
force for email solutionsa

ahttps://en.wikipedia.org/wiki/Yahoo!_Mail

↪ You are not an Internet citizen, if you don’t have an email address.

4 / 31

http://blog.annaliviaford.com/
https://en.wikipedia.org/wiki/History_of_Gmail
https://en.wikipedia.org/wiki/History_of_Gmail
https://en.wikipedia.org/wiki/Yahoo!_Mail

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

SMTP abuse: War on Virus and Spam

The first abuse wave was to send a worm over an email. The first known worm
was (unintentionally) the ’CHRISTMAS.EXEC’ under IBM mail in 1987 followed by
the famous ’I-LOVE-YOU’ (2000) and the ’SQL Slammer’.
Mail was/is used to spread viruses and to infect in particular the MS Windows
operating systems. The first well known candidates were ’Nimda’ followed by
’Sobig’ and many others.

Figure: Article from NBC news [https://www.nbcnews.com/id/wbna3078650]

↪ During this period the ’originators’ of this system used throw-away domains for
sending the email. This was fuel for Relay-Blacklist services like Spamhaus and
Spamcop, monetizing the idea of (S)ORBS – Spam and Open Relay Blocking System
(2002).

5 / 31

https://www.nbcnews.com/id/wbna3078650

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

SMTP abuse: War on Virus and Spam (2)

Between the years 2000 and 2010 the situation became really bad and people believed,
that SMTP email will soon be dead:

Figure: Growing numbers of emails (blue line) and
spams (red line) from year 2000 to 2003; black line
provides ration among both (right axis)

Figure: Email volume at ’WDR.de’ at
9/2003 handled by Qmail/Spamcontrol
+ QMVC; HTML monitoring given by
the ’Virulator ’

↪ Figures taken from my (unpublished) book ’Powernetworking mit Qmail & Co.’.

6 / 31

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

Spam Counter Means
Apart from content-based anti-virus and spam filters, which impact the email
throughput drastically, DNS based mechanisms began to become popular:

Relay Blacklists RBL (like (S)ORBS1, Spamhaus, Spamcop): Getting customer
complaints, they put the (reverse) IP address of such unwanted SMTP senders in
their DNS zone: 1.0.0.127.spamcop.org. The drawback is, that while doing the
DNS query, they can profile the entire SMTP Internet traffic.
Essentially the RBL service is a de-legitimization of the sender.

Reverse MX2 (RMX) - introduced by Hadmut Danisch (2004) - tries the opposite:
Provide additional credentials in the Internet required for an authorized SMTP MTA
and making it difficult for a (occasional) spammer. This draft was sabotaged by
the big mail providers, but gave rise to the

Sender Policy Framework3 (SPF) standard, which turns out to be complicated
failure and is on the list of RFCs to become retired.

Based on Yahoo’s Domainkeys4 patent and also including Microsoft’s Sender-ID5

DKIM6 was initally raised in RFC 4870 (shortly after revised in RFC 4871) and
later became RFC 6376. SPF + DKIM → DMARC (RFC 7489).

1https://en.wikipedia.org/wiki/Spam_and_Open_Relay_Blocking_System
2https://de.wikipedia.org/wiki/Reverse_MX
3https://en.wikipedia.org/wiki/Sender_Policy_Framework
4https:

//www.eff.org/de/deeplinks/2006/02/aol-yahoo-and-goodmail-taxing-your-email-fun-and-profit
5https://de.wikipedia.org/wiki/Sender_ID
6https://en.wikipedia.org/wiki/DomainKeys_Identified_Mail

7 / 31

https://tools.ietf.org/html/rfc4870
https://tools.ietf.org/html/rfc4871
https://tools.ietf.org/html/rfc6376
https://tools.ietf.org/html/rfc7489
https://en.wikipedia.org/wiki/Spam_and_Open_Relay_Blocking_System
https://de.wikipedia.org/wiki/Reverse_MX
https://en.wikipedia.org/wiki/Sender_Policy_Framework
https://www.eff.org/de/deeplinks/2006/02/aol-yahoo-and-goodmail-taxing-your-email-fun-and-profit
https://www.eff.org/de/deeplinks/2006/02/aol-yahoo-and-goodmail-taxing-your-email-fun-and-profit
https://de.wikipedia.org/wiki/Sender_ID
https://en.wikipedia.org/wiki/DomainKeys_Identified_Mail

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

The DKIM Working Model
The idea of DKIM is in principle quite simple given the following steps:

Sender: Receiver:
1. Generate a public key/private key pair. 4. Retrieve DKIM settings from the email.
2. Publish the domain’s public key in the DNS. 5. Fetch the public key from the DNS.
3. Sign every outgoing mail with the adjacent
private key and add a DKIM header.

6. Verify the mail’s integrity and by the very
same token authenticate its submitter.

MTA (Receiver)
MTA (Sender)

SMTP: StartTLS

Mail
spool

Mail
spool

DNS
Domain Name System

DKIM Record:
selector._domainkey.example.com TXT DKIMv1: pubkey

DNS TXT query:
selector._domainkey.example.com: DKIMv1: pubkey

MTA Application

Public Key

DKIM
Verifier

(libdkim)

Canonicalization,
DKIM headerPrivate Key

Mail

Public Key
Public Key

DKIM Signature

DKIM
Signer

(libdkim)

DKIM Header

Canonicalization,
DKIM header

4.

1.

2.

3.

generating

publishing

signing

retrieving

5. fetching

6.

verification

Figure: The major steps involved for using DKIM by two MTAs
8 / 31

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

How and What to DKIM Sign?
Digital Signatures are by far the most complex operations regarding asymmetrical
cryptography:

We always apply the signature algorithm against the hash value of the
digital object (the message M): h = ∕h(M). Therefore, we need to fix the
hash function ∕h and how we use the resulting hash value h.
→ We have the choice of SHA-1 or SHA-256.

We need to define the signature algorithm. The algorithm determines
the length of the public key. This should be short since it is part of the
DNS record, the RDATA section respectively.
Plenty of choices are possible, but they need to be fast as well; both for
signing and verification.
→ Here, we have basically the choice of RSA or of ECC (ED25519).

We need to define how we apply the signature: In case of RSA, the
resulting signature length is either 1024 or 2048 bit. Our hash input is
much smaller, ie. 256 bit. Using this as input would result in very
inhomogeneous distribution of the signature.
→ Thus, PKCS#1-V1.5 is chosen here (RFC 3447).

Furthermore, we need to determine what we sign. In DKIM we consider:

1. The email body → providing integrity.
2. A selection of indicated email headers including other signatures: → allowing

nesting and forwarding of mails.

→ We need canonicalization.
9 / 31

https://tools.ietf.org/html/rfc3447

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

DKIM Keys

DKIM keys are usually generated by means of the OpenSSL routines.

You have two choices:

1. Generate RSA keys (with a length of 1024 or 2084 bit): genrsa → generates both
public and private key.

2. Generate ECC keys (with a length of 255 bit): genkey -algorithm Ed25519 →
private key and pub → public key.

Let’s have a look at an RSA key with default length 1024 bit:

-----BEGIN PUBLIC KEY-----

MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCjhVSkadKX4qZSOfooKYZBfyRf

UcdA3nvuqJs3dnL70NQ2bpIse+YjWNr7Gckhy/RCnw7JiKB6wWA4AuMceYwh//I7

f2Z2qOC2pfb+qFk2q5ZY/excfm7sK9lv+7mvPxTCCMeDwlR6feVY5wni4rqMLsQS

cry+GMhhZDGwxDt6mQIDAQAB

-----END PUBLIC KEY-----

↪ This key – without the leading and trailing line is supposed to be published in the
DNS as TXT record.
What are its properties and what is wrong with it (and the RFCs don’t tell you)?

Let’s do a grep and count the bytes!

10 / 31

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

DKIM DNS Interface
The public key is supposed to be published in the DNS as DKIM TXT record. The
initial DKIM RFC 4871 defines the following structure for a TXT record:

FQDN:
<selector>. domainkey.example.com

RDATA:
v=DKIM1;k=<sigalg>;h=<hash>;s=<service>;t=<type>;p=<BASE64 pubkey>

Elements:

<selector>: Freely chosen name for key identification and key roll-over.

domainkey: Technical label to identify the DomainKeys record.

k=<sigalg>(*): Signature algorithm, thus RSA or ECC.

h=<hash>(***): Hash algorithm, allowing SHA-1 (RSA only) or SHA-2.

s=<service>(**): Service typed covered by the DKIM record.

t=<type>(**): Type of the DKIM record, i.e. test.

p=<BASE64 pubkey>: Encoded public key; either RSA or ECC.

(*) defaults exist; (**) optional; (***) redundant.

↪ This definition has many pitfalls and trapdoors and this RFC should be accompanied
by an critical addendum. Before the DNS TXT lookup, perform a CNAME query!

11 / 31

https://tools.ietf.org/html/rfc4871

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

DKIM DNS Woes: Length Issues
One of the concerns regarding public keys in the DNS as TXT records, is its length:

Since DNS is mainly transmitted over UDP, an UDP size of 512 byte shall be
achieved, in order to avoid to switch to EDNS0 or TCP.
Given a DNS query, this is not an issue.
For the DNS response, this might be of concern:
● It repeats the query.
● It includes the answer (the RDATA field as shown).
● It may include the Authoritative Section (NS).
● It may include the Additional Section (glue).

The length of the RDATA section in DKIM records is given by:
● The length of the public key → RSA 2084 ∼ 430 byte.
● The number and types of elements (eg. service).
● This is determining the number of delimiters.

Lets have a look:

$ dnstxt default._domainkey.fehcom.de

v=DKIM1; k=rsa; p=MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCjhVSkadKX4qZSOfoo

KYZBfyRfUcdA3nvuqJs3dnL70NQ2bpIse+YjWNr7Gckhy/RCnw7JiKB6wWA4AuMceYwh/

I7f2Z2qOC2pfb+qFk2q5ZYexcfm7sK9lv+7mvPxTCCMeDwlR6feVY5wni4rqMLsQScry+

GMhhZDGwxDt6mQIDAQAB

No current DNS implementation obeys/demands the UDP length of 512 byte
any longer. Most DNS servers (and resolvers) are happy with 1200 byte and
provide a large enough buffer. This is a ’digital dividend’ of IPv6!

12 / 31

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

DKIM DNS Woes: TXT Issues
While programming the DKIM implementation for s/qmail, I needed to have a
well-understood DNS test-bed. Thus, as a side effect, I enhanced djbdnscurve6 to
natively support not only TLSA but also DKIM records.

It turned out, that the structure of DNS TXT records are not defined in the DNS RFCs!

Given the long byte sequence of the DKIM TXT record, you need a translation from
the native presentation to the DNS TXT presentation.

How does it look like? (example only)

\255 v=DKIM1; k=rsa; p=MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCjhVSkadKX4 ...

\255 KYZBfyRfUcdA3nvuqJs3dnL70NQ2bpIse+YjWNr7Gckhy/RCnw7JiKB6wWA4AuMceYwh/ ...

\023 MhhZDGwxDt6mQIDAQAB

DNS TXT records are broken down into slices (’labels’) of maximal 255 byte
each. The length of each slice is indicated via the first (unsigned) byte in octal,
followed by the remaining bytes. The last slice is typically shorter.

Different DNS implementation may have different maximum label sizes, i.e. not
considering the MSB. Probably this behavior is originating from BIND using a fixed
buffer size for names of 255 bytes (the maximum domain name label length).

↪ ’Unstructured’ i.e. plain DNS TXT records are only accepted for the first 255 byte.
13 / 31

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

DKIM DNS Woes: DKIM Fields and Token Issues

The DKIM TXT record may includes additional particular fields:

v=DKIM1;k=<sigalg>;h=<hash>;s=<service>;t=<type>;p=<BASE64 pubkey>

Each field is separated from the following by a semicolon.

Additional white spaces are allowed, but neglected. They simply make the TXT

record bigger.

This can be seen in my published DKIM record:

$ dnstxt default._domainkey.fehcom.de
v=DKIM1; k=rsa; p=MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCjhVSkadKX4qZSOfoo
KYZBfyRfUcdA3nvuqJs3dnL70NQ2bpIse+YjWNr7Gckhy/RCnw7JiKB6wWA4AuMceYwh/
I7f2Z2qOC2pfb+qFk2q5ZYexcfm7sK9lv+7mvPxTCCMeDwlR6feVY5wni4rqMLsQScry+
GMhhZDGwxDt6mQIDAQAB

The only mandatory fields are:

v=DKIM1;

p=pubkey

↪ If the other information is missing, it defaults to RSA with SHA-1.

14 / 31

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

DKIM DNS Woes: Public Key Issue

DKIM RFC 4871 tries to convince us, that in the DNS TXT record the public key is
given as: p=<BASE64 pubkey>.

This is wrong.

If you apply the OpenSSL genrsa7 routines you generate:

At first the RSA public key based upon,

the ’diced’ p and q, and e=65537, and finally

using the Euklid’s Algorithm, the private key d is calculated.

The result is a file including all these parameters. As a second step, both the public
and the private key are stored in separate files. The output files are ASN.1 encoded,
including not only the leading and trailing files, thus you can ’stack’ those but also
provide a label, telling what kind of ASN.1 object it is:

p=MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCjhVSkadKX4qZSOfoo

KYZBfyRfUcdA3nvuqJs3dnL70NQ2bpIse+YjWNr7Gckhy/RCnw7JiKB6wWA4AuMceYwh/

I7f2Z2qOC2pfb+qFk2q5ZYexcfm7sK9lv+7mvPxTCCMeDwlR6feVY5wni4rqMLsQScry+

GMhhZDGwxDt6mQIDAQAB

↪ Generating ECC keys based on John Levin’s RFC 8463, the published Ed25519 key
needs to be stripped from its label, which is MCowBQYDK2VwAyEA. If you don’t obey
that, verification will fail.

$ openssl asn1parse -inform PEM -in private.key

7the man page has been removed in the current versions, the existing one does not tell the truth

15 / 31

https://tools.ietf.org/html/rfc4871
https://tools.ietf.org/html/rfc8463

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

DKIM Canonicalization
Initially, email (pre RFC 821) was an 7 bit communication protocol. All modern
implementations support 8 bit bytes.

The email messages consists of two sections, the
the email header and
the email body.

According to RFC 2822 both sections are organized and transmitted in lines, with
typically a length of < 78 characters and a maximum of 998 bytes. Each line is
terminated by the ASCII CRLF sequence.

The email header can be ’folded’ in order to become more readable: Continuation
sequences can be indented, typically by a ASCII HT. s/qmail uses two white spaces.

A Unix system delivering mails from the Internet to local users needs to ’strip’ the
’CR’ after reception.
SMTP mails to be send, need to be enriched with a ’CR’ before it is delivered.

↪ In order to cope with different SMTP MTAs and their message handling, DKIM has
chosen to provide some canonicalization of the message pre/post signature
generation/verification.

r relax (allow mangling of whitespaces and cases; default),

s simple (=strict),

t relax on header, simple on body,

u simple on header, relax on body.

16 / 31

https://tools.ietf.org/html/rfc2822

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

DKIM Signing and Header information

The DKIM signing process involves the following steps:

1. The message needs to be parsed; missing CR (even for empty lines) need to be
added.

2. The body (including all its MIME parts) is identified and line-by-line the hash
sum is incremented calculated (either SHA-1, or SHA-256, or both).
The value is recorded in a header field:
bh=base64(hash);

3. Particular message header are selected, fetched, and their hash sum is generated.
The selected header fields are indicated in a new header field:
h=Received:Date:From:To:Subject:Message-ID;

4. The signature of the common body hash and hash of the selected header fields is
calculated and given as:
b=base64(signature)

5. Further DKIM header fields indicate the signature algorithm and hash function
used (a=), the way the canonicalization was achieved (c=), the expiration time
(x=), and where to find the public key (in the DNS):
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;

d=fehcom.de; s=default; x=1695295824; q=dns/txt;

↪ DNS TXT: default. domainkey.fehcom.de

17 / 31

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

DKIM signed Message Sample
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;

d=fehcom.de; s=default; x=1695295824; q=dns/txt; h=Received:

Mailing-List:Precedence:list-help:list-unsubscribe:list-post:

Delivered-To:Received:Received-SPF:Date:From:To:Subject:

Message-ID:MIME-Version:Content-Type:Content-Disposition; bh=JO

BJBgOCD2P2qaKx2RrUz59d3+yJ/BsP8IBHAGYPORc=; b=eAAJdvIsx3dkct1FXE

vmiDHZDpTySpfmrdPeKDKSWSY89QQKuBOc17KaOETvBFdk9U6favUR2JHazPPrbP

wTQZwnFeB74iVmJsZQj/uihC2k5MDZ4VWhub/uNNKzJjxtTxzmwdhGdgu6LFXgg4

9S58UwUw76JhpoA0IDG0hRzJA=

Received: (qmail 3928722 invoked by alias); 14 Sep 2023 11:30:12 -0000

Mailing-List: contact sqmail-help@mail.fehcom.net; run by ezmlm

Precedence: bulk

X-No-Archive: yes

list-help: <mailto:sqmail-help@mail.fehcom.net>

list-unsubscribe: <mailto:sqmail-unsubscribe@mail.fehcom.net>

list-post: <mailto:sqmail@mail.fehcom.net>

Delivered-To: mailing list sqmail@mail.fehcom.net

Received: (qmail 3928715 invoked from network); 14 Sep 2023 11:30:11 -0000

Received-SPF: pass (brunni.mail.netestate.de: domain of netestate.de

designates 81.209.177.48 as permitted sender)

receiver=india167; client-ip=81.209.177.48

envelope-from=brunni@netestate.de;

Date: Thu, 14 Sep 2023 13:29:48 +0200

From: Michael Brunnbauer <xxx@netestate.de>

To: sqmail@mail.fehcom.net

Subject: Is ucspi-ssl 0.11.6a compatible with OpenSSL 3.0?

Message-ID: <ZQLurAhyDmuqJvXm@netestate.de>

MIME-Version: 1.0

Content-Type: multipart/signed; micalg=pgp-sha1;

protocol="application/pgp-signature"; boundary="jwenCs685xv/D5bw"

Content-Disposition: inline

X-Evolution-Source: 01344637956320dc13dd427df7b77aba0b6839d2

hi all,
https://www.fehcom.de/ipnet/ucspi-ssl.html says that ucspi-ssl 0.12.7 supports OpenSSL 3.1 and 3.0 but I wonder whether ucspi-ssl
0.11.6a already supports OpenSSL 3.0?
Regards,

Michael Brunnbauer
18 / 31

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

DKIM Verification

For DKIM verification, the following steps need to achieved:

1. The email needs to be received (stored) and

2. potentially, CR characters need to be added.

3. From the email DKIM header signature parameters are determined,

4. the DKIM key(s) is/are fetched from the DNS.

5. According to the instructions in the DKIM header, the hash sums are generated –
corresponding the canonicalization.

6. The calculated and the provided hash sums are compared.

7. The calculated and the provided DKIM signatures are compared.

8. An un-determined header field as prepended to the message, telling the state.

9. The email might be rejected (and bounced) given the local policy.

↪ DKIM key revocation is possible, in case a DKIM TXT record is provided, but an
empty key is deployed.

19 / 31

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

DKIM verification Message Sample

Return-Path:
<4814d750.AW8AACTDSzUAAAAAAAAAAGL-usMAASV4DLsAAAAAAApTqgBk8ZBC@a676778.bnc3.mailjet.com>

Delivered-To: netfehcom-hoffmann@fehcom.de
Received: (qmail 3045647 invoked from network); 1 Sep 2023 07:18:27 -0000
X-Authentication-Results: gi.de; dkim=pass; mail.fehcom.net
Received-SPF: pass (o143.p9.mailjet.com: domain of
a676778.bnc3.mailjet.com designates 87.253.234.143 as permitted sender)
receiver=india167; client-ip=87.253.234.143
envelope-from=4814d750.AW8AACTDSzUAAAAAAAAAAGL-usMAASV4DLsAAAAAAApTqgBk8ZBC@a676778.bnc3.mailjet.com;

Received: from o143.p9.mailjet.com (87.253.234.143)
de∕crypted with TLSv1.3: TLS_AES_128_GCM_SHA256 [128∕128]
DN=none
by india167 with ESMTPS; 1 Sep 2023 07:18:27 -0000

DKIM-Signature: v=1; a=rsa-sha256; c=relaxed∕simple; q=dns∕txt; d=gi.de;
i=mitgliederservice@gi.de; s=mailjet; x=1693559906;
h=message-id:mime-version:from:from:reply-to:to:to:subject:subject:date:date:list-unsubscribe:
list-unsubscribe-post:feedback-id:organization:x-csa-complaints:x-mj-mid:
x-mj-smtpguid:x-report-abuse-to:content-type;
bh=kwBBUEGfqdz8LM∕moDIltaJTexdf25N9oX61NoVlpv4=;
b=E05s68wl81Kwf3is6xECnsMOZaFeRD+PskatQUD74DRNtZapTjcLtJGUp
ZFWpMqJj∕5xZVlcOhzLJIa+n4mKFIODgNTWqeSEwYBVob7oO∕u5N2JWix+C1
Ns9bq0+H7aMzPN9h2O∕iD4Iv2IvEpeIeubZkQNQzSzbAJHxFrZ+aBA=

Return-Path:
<4814d750.AW8AACTDSzUAAAAAAAAAAGL-usMAASV4DLsAAAAAAApTqgBk8ZBC@a676778.bnc3.mailjet.com>

Message-Id: <4814d750.AW8AACTDSzUAAAAAAAAAAGL-usMAASV4DLsAAAAAAApTqgBk8ZBC@mailjet.com>
MIME-Version: 1.0

3. SPF Authenticator

2. DKIM Authenticator

1. DKIM Header

Figure: s/qmail’s SPF and DKIM verification header

20 / 31

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

DKIM ECC Keys and Hybrid Signing

It is possible to sign an email with two different DKIM signatures. Here, we have the
choice:

RSA signature with both SHA-1 and SHA-256 hash sums. Makes no sense.

RSA signatures with different key sizes (1024/2048 bit). Could be beneficial in
case old implementations can only cope with 1024 bits or in case of DNS
restrictions.

RSA and ECC keys. Again, is helpful for backward compatibility. Until now, Gmail
has no knowledge about ECC keys.

↪ In case of different DKIM keys different <selectors> need to be provided!
However, different hash algorithms are happy with one key in the DNS only.

$ dnstxt eddy._domainkey.fehcom.de
v=DKIM1; k=ed25519; p=kznHDE2PAWcnHfs8jqMPswPJvYmeCEPiHxIt0kzSefw=

$ dnstxt default._domainkey.fehcom.de
v=DKIM1; k=rsa; p=MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCjhVSkadKX4qZSOfoo
KYZBfyRfUcdA3nvuqJs3dnL70NQ2bpIse+YjWNr7Gckhy/RCnw7JiKB6wWA4AuMceYwh/
I7f2Z2qOC2pfb+qFk2q5ZYexcfm7sK9lv+7mvPxTCCMeDwlR6feVY5wni4rqMLsQScry+
GMhhZDGwxDt6mQIDAQAB

21 / 31

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

DKIM Hybrid Signing
Return-Path: <sqmail-return-204-ehoffmann221=gmail.com@mail.fehcom.net>

Received: from mail.fehcom.net (mail.fehcom.net. [85.25.149.179]) by

 mx.google.com with ESMTPS id

 e19-20020a05600c13d300b003fef75b7f34si393459wmg.84.2023.08.26.09.41.22 for

 <ehoffmann221@gmail.com> (version=TLS1_3 cipher=TLS_AES_256_GCM_SHA384

 bits=256/256); Sat, 26 Aug 2023 09:41:22 -0700 (PDT)

Received-SPF: pass (google.com: domain of

 sqmail-return-204-ehoffmann221=gmail.com@mail.fehcom.net designates

 85.25.149.179 as permitted sender) client-ip=85.25.149.179;

Authentication-Results: mx.google.com; dkim=neutral (no key)

 header.i=@fehcom.de header.s=eddy header.b="EjCxCH/f"; dkim=pass

 header.i=@fehcom.de header.s=default header.b=SZ1Vsyxh; spf=pass

 (google.com: domain of

 sqmail-return-204-ehoffmann221=gmail.com@mail.fehcom.net designates

 85.25.149.179 as permitted sender)

 smtp.mailfrom="sqmail-return-204-ehoffmann221=gmail.com@mail.fehcom.net"

DKIM-Signature: v=1; a=ed25519-sha256; c=relaxed/relaxed;

 d=fehcom.de; s=eddy; x=1693672881; q=dns/txt; h=Received:

 Mailing-List:Precedence:list-help:list-unsubscribe:list-post:

 Delivered-To:Received:Message-ID:Subject:From:To:Date:

 Organization:Content-Type:User-Agent:MIME-Version; bh=f4+UJB95r

 jbFMuNVU4GzAqOWn3NWMuRzQC6lVEJ9+Ic=; b=EjCxCH/f/uKGOb9CSyEvnFZIH

 kc6oKhrMZHUbH7CYOv8dITBHmmNgArq8I2fhupYolVlUQSAAox+WPsfOG5+Aw==

DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;

 d=fehcom.de; s=default; x=1693672881; q=dns/txt; h=Received:

 Mailing-List:Precedence:list-help:list-unsubscribe:list-post:

 Delivered-To:Received:Message-ID:Subject:From:To:Date:

 Organization:Content-Type:User-Agent:MIME-Version; bh=f4+UJB95r

 jbFMuNVU4GzAqOWn3NWMuRzQC6lVEJ9+Ic=; b=SZ1VsyxhwYl8psGQ3FS4WxcTP

 LL+3SHzfOuKoGcW9gPje8VpdH1+6wCKbMspjiwDudUlSHWqEAerZ3oinoHRYSc+3

 fpkRe25+YqyXkpXm/yeqe6lHoAndO7q+svQR9lEDaq4sSBynL9is6dWJcDYzdwP9

 mGAI45y8Fu1I6MUR9U=

Received: (qmail 2696628 invoked by alias); 26 Aug 2023 16:41:10 -0000

DKIM ECC Signature

DKIM RSA Signature

Gmail's DKIM Authenticator

Figure: s/qmail’s hybrid signing with both ECC and RSA keys 22 / 31

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

DKIM implementations

DKIM’s home page is dkim.org. However, it does not reference the two major (public
domain) DKIM implementations I’m aware of:

ALT-N’s libdkim [https://libdkim.sourceforge.net/]

Opendkim [http://www.opendkim.org/]

Let’s compare them (against s/qmail):

Program File Version Date Size (byte) Lang Files #words #lines RFCs
libdkim libdkim-1.0.21.zip 1.0.21 2013-04-15 55,049 C++ 13 57,812 1,439 4871
Opendkim opendkim-2.10.3.tar.gz 2.10.3 2015-05-12 1,210,224 C 230 945,661 33,437 6376

s/qmail just DKIM 4.2.25 2023-07-19 145,152 *) C/C++ 9 36,558 967 6376,
s/qmail sqmail-4.2.25.tgz 4.2.25 2023-07-19 399,360 C/C++ 226 393,127 14,700 8463

Table: Software characteristics of some DKIM implementations; *) unpacked

↪ The Opendkim solution is used by sendmail, postfix, and exim – with the milter
interface (dkim-milter).

Only libdkim is popular in the Qmail universe: Indimail (Manvendrah), eQmail (Kai
Peter). Thus, I picked up libdkim for the DKIM implementation in s/qmail, though it
is C++ code from basically 2005.

23 / 31

dkim.org
https://libdkim.sourceforge.net/
http://www.opendkim.org/

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

C++ DKIM Woes: The code base
Mark Delany designed DKIM [4] and gave birth to Alt-N’s libdkim based on C++:

dkim.cpp

dkimbase.cpp

dkimsign.cpp

dkimverify.cpp

Of course, the autoconf bullshit is there. The C++ code uses mainly STL, some C

interfaces are required providing access to the libc DNS stub library (dnsresolv.cpp),
which – as reported – did not work well.

Pros:
The code was compact.
Inline documentation exists.
The code was well structured.
C++ classes require to look at the header files while using ’virtual functions’.

Cons:
The code includes old ’Allman’ fragments.
Also ADMD (RFC 6541) was present in a preliminary version.
Of course, John Levine’s ECC (Ed25519) signatures were missing (RFC 8463).

The code needed complete refactoring and enhancement to meet current RFCs.
The API against s/qmail for signing and verifying mails needs to be defined
and realized in a way a stable support, easy usage, and multi-tenancy can be
achieved.

24 / 31

https://tools.ietf.org/html/rfc6541
https://tools.ietf.org/html/rfc8463

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

C++ DKIM Woes: Development
The development of DKIM for s/qmail was realized in mainly three steps:

1. Understanding and refactoring of the libdkim modules.

2. Setting up the API for s/qmail : DNS, mail signing, and mail verification.

3. Enhancing the DKIM algorithms to support Ed25519 signatures.

During this development I had substantial support from John Levine, giving me
valuable hints about the ECC implementation (no C or C++ implementation did exist
yet), Kai Peter and Jörg Backschues regarding the script to generate the DKIM
public/private keys and their DNS deployment. Finally, Manvendrah did provide a
solution for ’hybrid’ RSA/ECC keys which fortunately could be realized in a more
efficient way.

This last step required same analysis with Valgrind, showing some memory corruption
coupling OpenSSL with C++ virtual function destructor calls in libdkim.

Without the support of a skilled beta tester (Pascal Novus) I would never be able to
setup a solution which was close to fulfill the requirements of a real ISP.

s/qmail ’s DKIM solution is certainly one of the most advanced solutions.
Manvandrah took portions of my code for his IndiMail. The code this public
domain and can be used for other DKIM projects as well, thus is not specific
but can be used as a drop-in replacement for any existing libdkim installations.

25 / 31

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

s/qmail: DKIM Integration
In s/qmail, libdkim is the basic module but now renamed to qmail-dkim accompanied
by the following modules:

libdkim → qmail-dkim as original C++ module but using fehQlibs DNS stub
resolver.
qmail-dksign is the C written interface to DKIM sign messages. It is located
between the s/qmail queue and the qmail-remote send process.
qmail-dkverify is the C interface called via the QUEUE EXTRA mechanism (to be
used by AV scanners and others).
mkdkimkey.sh → shell script to generate RSA and ECC keys + DNS TXT record
(BIND format).

One important design decision integrating DKIM natively into s/qmail was the setup
of a staging area for mails to be signed, which is now part of the queue directory:

$ ls -la /var/qmail/queue
drwx------ 2 qmails sqmail 512 Jul 29 12:05 bounce
drwxr-x--- 25 qmailq sqmail 512 Dec 9 2022 dkim (used for signing and verification)
drwx------ 25 qmails sqmail 512 Nov 18 2022 info
drwx------ 25 qmailq sqmail 512 Nov 18 2022 intd
drwx------ 25 qmails sqmail 512 Nov 18 2022 local
drwxr-x--- 2 qmailq sqmail 512 Nov 18 2022 lock
drwxr-x--- 25 qmailq sqmail 512 Nov 18 2022 mess
drwx------ 2 qmailq sqmail 512 Sep 15 11:16 pid
drwx------ 25 qmails sqmail 512 Nov 18 2022 remote
drwxr-x--- 25 qmailq sqmail 512 Nov 18 2022 todo

↪ These directories typically have subdirectories for efficient mail storage: ./dkim/nm
26 / 31

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

s/qmail: DKIM signing
DKIM signing a message needs to have an user interface:

Given s/qmail ’s multi-tenancy, different domains should have the possibility to
use different DKIM keys and signing policies.
Since DKIM uses OpenSSL (or LibreSSL) for signing and verification, DKIM keys
and TLS keys and other key material shall be available side-by-side sharing the
same access permissions.

Thus we have:
/var/qmail/control/dkimdomains → define storage of DKIM keys and
procedures per domain.
/var/qmail/control/domaincerts → define storage of TLS keys and trust store
per domain.
/var/qmail/ssl/domainkeys/<domain> → storage of DKIM private keys for
signing and in particular key-rollover.

qmail-rspawn ?

dkimdomains

qmail-dksign

qmail-remote

qmail-dkim

queue/
dkim/X

queue/
dkim/Y

CR
added

DKIM
message +
sig. added

forks forks with parms returns

reads

writes reads writes

CR
stripped

reads

FD0

FDy

FD0

stats

qmail-dksign

private key

specifies

forks

FD0

FDx

purge DKIM files

mkdkimkey

creates

uses

public key

v=DKIM1;
k=rsa;
p=MIG…provisions

DNS DKIM
TXT record

Figure: s/qmail’s DKIM signing architecture 27 / 31

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

s/qmail: DKIM verification
s/qmail ’s DKIM verification process gave me a lot of headaches:

How to integrate it into s/qmail?
Do we really need a staging area for canonicalization?
How to provide the results of the DKIM verification to the user?
Shall email with wrong signatures being rejected?

The verification process shall be efficient and fast (given DDoS attacks), configurable
(verify only mails from particular domains) and reliable.

DKIM verification is done by a call of qmail-dkverify using the QUEUE EXTRA

mechanism with two environment variables:
QMAILQUEUE="bin/qmail-dkverify" → verify each incoming mail.
DKIM="+" → reject emails, if DKIM verification will fail.

↪ Results for DKIM signed emails are displayed in the received message header:
X-Authentication-Results: amazon.de; dkim=pass; mail.fehcom.net

qmail-smptd ?

QMAILQUEUE=
"bin/qmail-dkverify"

qmail-dkverify

qmail-queue

qmail-dkim

queue/
dkim/X

queue/
dkim/Y

CR
added

DKIM
verified

(Header)

forks forks with parms returns

writes reads writes

CR
stripped

reads

FD0

FDy

DNS
query/

response

selector._domainkey.fqdn

FDx

FD0

qmail-dkverify
FD0

forks
purge DKIM files

FDx

v=DKIM1;
k=rsa;
p=MIG…

DKIM TXT query:
DKIM TXT reply:

Figure: s/qmail’s DKIM verification pipeline 28 / 31

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

DKIM & s/qmail: Lessons learned
Integration of DKIM into s/qmail and given the initial requirements involved about 1
year of work and was a major, in particular SW architectural project:

C++ is difficult to read, though STL provides some good routines.
The conglomerate of 2005 C++ style, C (printf) combines certainly the worst
elements of both languages, though it seems to be efficient.
Read the RFCs very carefully and twice!
Go in detail through the ABNF syntax rules!
But don’t expect things are correctly described.
Understand each line of code you have to refactor.
Include useful in-line comments in the code FOR YOURSELF.
Don’t assume your test cases and environment fits everybody.
Look for qualified beta testers.

Now, the final question: Was this project useful and did it brought some benefits?

1. DKIM signing and verifying is almost useless. Each mail has to be process at
least twice → huge waste of electrical energy (like virus scanning).

2. Apart from mistakes, each DKIM signed message is verified ok.
3. It helps for my (and my s/qmail user’s) domain to increase reputation for Gmail

et al.
4. It is complete useless in order to suppress spam → You need to accept emails

without DKIM signatures anyway.

Happy Binc Imapping!

29 / 31

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

DKIM & s/qmail: Lessons learned
Integration of DKIM into s/qmail and given the initial requirements involved about 1
year of work and was a major, in particular SW architectural project:

C++ is difficult to read, though STL provides some good routines.
The conglomerate of 2005 C++ style, C (printf) combines certainly the worst
elements of both languages, though it seems to be efficient.
Read the RFCs very carefully and twice!
Go in detail through the ABNF syntax rules!
But don’t expect things are correctly described.
Understand each line of code you have to refactor.
Include useful in-line comments in the code FOR YOURSELF.
Don’t assume your test cases and environment fits everybody.
Look for qualified beta testers.

Now, the final question: Was this project useful and did it brought some benefits?

1. DKIM signing and verifying is almost useless. Each mail has to be process at
least twice → huge waste of electrical energy (like virus scanning).

2. Apart from mistakes, each DKIM signed message is verified ok.
3. It helps for my (and my s/qmail user’s) domain to increase reputation for Gmail

et al.
4. It is complete useless in order to suppress spam → You need to accept emails

without DKIM signatures anyway.

Happy Binc Imapping!
29 / 31

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

DKIM & s/qmail: Final Picture

#!/bin/sh
QMAILU=`id -u qmaild`
QMAILG=`id -g qmaild`
HOSTNAME=`hostname`
export UCSPITLS=""
export QMAILQUEUE="bin/qmail-dkimverify"
. /var/qmail/ssl/ssl.env
exec env PATH="/var/qmail/bin:$PATH" \
 sslserver -seVn -Rp -l $HOSTNAME \
 -Xx /var/qmail/control/rules.smtpd.cdb \
 -u $QMAILU -g $QMAILG 0 smtp \
 qmail-smtpd 2>&1

/var/qmail/queue

qmail-smtpd
(ESMTP, AUTH,

STARTTLS)

qmail-qmtpd
(QMTP)

sslserver

#!/bin/sh
QMAILU=`id -u qmaild`
QMAILG=`id -g qmaild`
HOSTNAME=`hostname`
export SMTPAUTH="!+cram"
. /var/qmail/ssl/ssl.env
exec env PATH="/var/qmail/bin:$PATH" \
 sslserver -seVn -Rp -l $HOSTNAME \
 -Xx /var/qmail/control/rules.sub.cdb \
 -u $QMAILU -g $QMAILG 0 submission \
 qmail-smtpd qmail-authuser true 2>&1

qmail-smtpd
(Submission,
STARTTLS)

qmail-smtpd
(ESMTPS, AUTH)

sslserversslserver

qmail-qmqpd
(QMQP)

qmail-send

qmail-lspawn qmail-local /home/
/home/

qmail-rspawn

qmail-remote
qmail-remote

qmail-qmqc

qmail-pop3d
(POP3, STLS)

sslserver

qmail-pop3d
(POP3S)

#!/bin/sh
QMAILU=`id -u qmaild`
QMAILG=`id -g qmaild`
QMTPS="6209"
HOSTNAME=`hostname`
. /var/qmail/ssl/ssl.env
exec env PATH="/var/qmail/bin:$PATH" \
 sslserver -seV -Rp -l $HOSTNAME \
 -Xx /var/qmail/control/rules.qmtpsd.cdb \
 -u $QMAILU -g $QMAILG 0 $QMTPS \
 qmail-qmtpd 2>&1

qmail-qmtpd
(QMTPS)

/var/qmail/queue
(remote instance)

sslserver

sslserver

tcpserver

tcpserver

Internet

Internet

tcpserver

qmail-qmqpd
(QMQP)

Port 25 Port 587Port 465

plain

ESMTP(S)

TLS encrypted

plain
Port 110 Port 995

QMTP(S)

TLS encrypted

Local Delivery

Remote Delivery

Peer Delivery/
Peer Service

Unsolicited Reception

POP3 Service

Port
209

Port
6209

Port
628

Port 628 n
n

n

n

qmail-queue
(housekeeping)

#!/bin/sh
QMAILU=`id -u qmaild`
QMAILG=`id -g qmaild`
HOSTNAME=`hostname`
export SMTPAUTH="+cram"
. /var/qmail/ssl/ssl.env
exec env PATH="/var/qmail/bin:$PATH" \
 sslserver -seV -Rp -l $HOSTNAME \
 -Xx /var/qmail/control/rules.smtpsd.cdb \
 -u $QMAILU -g $QMAILG 0 smtps \
 qmail-smtpd qmail-authuser true 2>&1

ESMTP Submission ESMTPS

/var/log/qmail-X

/var/log/qmail-X

#!/bin/sh
LOG_NAME=`basename ${PWD%/log}`
LOG_SIZE="2000000"
LOG_DIR="/var/log/${LOG_NAME}"
if [! -d "${LOG_DIR}"]; then
 mkdir -p "${LOG_DIR}"
 chown qmaill:nofiles "${LOG_DIR}"
 echo "Creating log dir for ${LOG_NAME}:"
 ls -ld "${LOG_DIR}"
fi
exec 2>&1
exec setuidgid qmaill multilog t s${LOG_SIZE} "${LOG_DIR}"

LOGGING

/var/log/qmail-X

#!/bin/sh
HOSTNAME=`hostname`
. /var/qmail/ssl/ssl.env
exec env PATH="/var/qmail/bin:$PATH" \
 sslserver -seV -Rp -l $HOSTNAME 0 pop3s \
 qmail-popup $HOSTNAME qmail-authuser \
 qmail-pop3d Maildir true 2>&1 5>&1

POP3S*

QMTPS

@

feh@2023/01/29

#!/bin/sh
HOSTNAME=`hostname`
export UCSPITLS=""
. /var/qmail/ssl/ssl.env
exec env PATH="/var/qmail/bin:$PATH" \
 sslserver -seV -Rp -l $HOSTNAME 0 pop3 \
 qmail-popup $HOSTNAME qmail-authuser \
 qmail-pop3d Maildir true 2>&1 5>&1

POP3*
plain TLS encrypted auth

plain

TLS encryptedTLS encrypted

plain

TLS

encrypted

plain

plain

plain TLS encrypted TLS encrypted

#!/bin/sh
QMAILU=`id -u qmaild`
QMAILG=`id -g qmaild`
QMQP="628"
HOSTNAME=`hostname`
exec env PATH="/var/qmail/bin:$PATH" \
 tcpserver -v -Rp -l $HOSTNAME \
 -Xx /var/qmail/control/rules.qmpd.cdb \
 -u $QMAILU -g $QMAILG 0 $QMQP \
 qmail-qmqpd 2>&1

QMQP

#!/bin/sh
exec env - PATH="/var/qmail/bin:$PATH" \
 qmail-start ./Maildir/
#qmail-start '|preline -f /usr/local/libexec/dovecot/dovecot-lda'

START

Bounces,
NDR

Local Injection
qmail-inject sendmail Wrapper

n

qmail-
dkverify

qmail-dksign

Figure: s/qmail’s Big Picture – Binc IMAP Server to come!

30 / 31

SMTP Spam Wars DKIM Model DKIM Keys in DNS Signing Verification ECC Keys DKIM Implementations s/qmail DKIM References

References

Yahoo DKIM patent: https://www.itprotoday.com/email-and-calendaring/
yahoo-publishes-ietf-draft-domainkeys

dkim.org: https://www.dkim.org/

Libdkim: https://libdkim.sourceforge.net/index.html

DKIM Summit: https://www.dkim.org/summit-1/index.html

SPF: https://datatracker.ietf.org/doc/rfc7208/

DKIM@Wiki: https://en.wikipedia.org/wiki/DomainKeys_Identified_Mail

DKIM Signature RFC: https://datatracker.ietf.org/doc/html/rfc6376

DKIM ECC RFC: https://datatracker.ietf.org/doc/html/rfc8463

Christmas.exec worm: https://de.wikibrief.org/wiki/Christmas_Tree_EXEC

I-Love-You worm: https://de.wikibrief.org/wiki/ILOVEYOU

SQL-Slammer worm: https://en.wikipedia.org/wiki/SQL_Slammer

31 / 31

https://www.itprotoday.com/email-and-calendaring/yahoo-publishes-ietf-draft-domainkeys
https://www.itprotoday.com/email-and-calendaring/yahoo-publishes-ietf-draft-domainkeys
https://www.dkim.org/
https://libdkim.sourceforge.net/index.html
https://www.dkim.org/summit-1/index.html
https://datatracker.ietf.org/doc/rfc7208/
https://en.wikipedia.org/wiki/DomainKeys_Identified_Mail
https://datatracker.ietf.org/doc/html/rfc6376
https://datatracker.ietf.org/doc/html/rfc8463
https://de.wikibrief.org/wiki/Christmas_Tree_EXEC
https://de.wikibrief.org/wiki/ILOVEYOU
https://en.wikipedia.org/wiki/SQL_Slammer

	SMTP
	Spam Wars
	DKIM Model
	DKIM Keys in DNS
	Signing
	Verification
	ECC Keys
	DKIM Implementations
	s/qmail DKIM
	References

